SA WG2 Temporary Document

Page 11

SA WG2 Meeting #127-bis
S2-184798
May 28 – June 1, 2018, Newport Beach, USA
(revision of S2-18xxxx)
Source:
Motorola Mobility, Lenovo
Title:
Update of Solution 1 (UE-Assisted)
Document for:
Approval
Agenda Item:
6.10
Work Item / Release:
FS_ENTRADE / Rel-16
Abstract of the contribution:
1. Discussion
This clause addresses the following open issues in Solution 1:

1. What kind of rules are provided to UPF for encrypted traffic detection?

2. Does the UPF need to interact with the SMF every time an encrypted data flow is detected?

3. How can the AppKey be embedded into user-plane traffic?
4. We remove the "UE-ETDF retrieval procedure" and the relevant EN because we agree that the retrieval of the UE-ETDF from the network is considered as part of the UE provisioning and should not be further studied in this TR.
5. The UE indicates if it is capable of providing "encrypted traffic detection information" not in every PDU session establishment request, but during the 5GC registration. The AMF stores this capability and forwards it to SMF during the PDU session establishment.
1.1 UPF rules for Encrypted Traffic Detection
As already specified in TS 23.503, during the establishment/modification of an N4 session, the SMF provides to UPF Packet Detection Rules (PDRs), which are used in the UPF to detect selected traffic and perform actions on the detected traffic (e.g. drop, buffer, forward, duplicate, etc.).

In solution 1, the SMF provides one or more PDRs to UPF (as normally). They are used in UPF for detecting unencrypted data flows but also for detecting encrypted data flows. A PDR used for encrypted data flow detection includes one or more AppKeys in the Packet Detection Information (PDI) of the PDR rule. As an example, a PDR for encrypted data flow detection can indicate:

-
Packet Detection Information: AppKey-1, AppKey-2

-
Forwarding Action: Drop

When the UPF receives an incoming packet containing an AppKey that matches a PDR, then the UPF stores the 5-tuples of this packet and applies the PDR to all incoming packets having the same 5-tuple.
Therefore, to support encrypted traffic detection, solution 1 requires (a) a PDR provided to UPF to contain one or more AppKeys and (b) when the UPF receives an incoming packet containing an AppKey that matches a PDR, to store the 5-tuples of this packet and to apply the PDR to all incoming packets having the same 5-tuple. The actions executed by UPF after detecting an encrypted data flow, can be any of the currently defined actions (specified in TS 23.503 and in TS 29.244).
1.2 UPF/SMF interactions for Encrypted Traffic Detection

In solution 1, the UPF is not required to interact with the SMF every time an encrypted data flow is detected (this would create massive signalling on the N4 interface anyway). The UPF simply detects encrypted data flows matching PDR rules (by using the AppKey) and enforces the actions in the matched PDR rules. If needed (and as currently specified), it is possible a PDR rule to instruct the UPF to inform the SMF when a matching packet is detected.
1.3 Embed the AppKey into User-Plane Traffic

This clause considers how the AppKey (that indicates the application associated with an encrypted data flow) can be embedded into the user-plane packets. Two options are discussed below.
Option 1: Embed the AppKey into IPv4/v6 Packets

In case of PDU sessions with Type=IPv6, the AppKey can be embedded into an IPv6 header as shown in figure below. A new IPv6 extension header type should be defined (here called ETDF Header). Existing IPv6 extension headers can be found at https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml#extension-header.

The UE includes the ETDF Header (containing the AppKey) in an IPv6 packet that initiates an encrypted data flow, e.g. in an IPv6 packet carrying a TCP SYN segment with destination port 443. When the UPF receives an IPv6 packet that contains the ETDF extension header (that has a unique value assigned by IANA), the UPF removes the ETDF Header and forwards the IPv6 packet to the final destination, as shown in the figure below.
[image: image1.emf]Version

Class

Flow-label

Payload

length

Next

Header

= ETDF

Source

Address

(UE)

Destination

Address

(Remote

server)

Next

Header =

e.g. TCP

AppKey

TCP Payload

(e.g. TCP SYN to port 443)

ETDF Header

IPv6 header

UPF UE

Version

Class

Flow-label

Payload

length

Next

Header =

e.g. TCP

Source

Address

(UE)

Destination

Address

(Remote

server)

TCP Payload

(e.g. TCP SYN to port 443)

IPv6 header

Remote

Server

If the received IPv6

packet contains an

ETDF extension

header, it removes

this header and uses

the AppKey for

Application Detection

Fig. 1.2-1: Embed the AppKey into IPv6 packets

Similar behaviour can be specified for PDU sessions with Type=IPv4. A new Protocol Type should be defined (here called ETDF protocol type). The UE includes the ETDF protocol type in the IPv4 header of a packet that contains the AppKey and encapsulates the user-plane payload (e.g. a TCP payload) with an ETDF header. When the UPF receives an IPv4 packet containing the ETDF protocol type (that has a unique value assigned by IANA), the UPF removes the ETDF Header and forwards the IPv4 packet to the final destination, as shown in the figure below.
[image: image2.emf]Octet 1 Octet 2

Protocol

Type =

ETDF

Source

Address

(UE)

Destination

Address

(Remote

server)

Protocol

Type =

e.g. TCP

AppKey

TCP Payload

(e.g. TCP SYN to port 443)

ETDF Header

IPv4 header

UPF UE

Octet 1 Octet 2

Protocol

Type =

e.g. TCP

Source

Address

(UE)

Destination

Address

(Remote

server)

TCP Payload

(e.g. TCP SYN to port 443)

IPv4 header

Remote

Server

If the received IPv4

packet contains an

ETDF protocol type, it

removes the ETDF

header and uses the

AppKey for

Application Detection

Fig. 1.2-2: Embed the AppKey into IPv4 packets

Embedding the AppKey with the IPv4/v6 headers is a feasible option but comes with some drawbacks:

1.
It is difficult to implement in the UE, as it requires changes deep in the networking stack (in a Linux implementation, a new kernel module could be required that is called from a Netfilter hook).
2.
It needs the UPF to extract some parts from an IP packet that contain an AppKey, to construct another IP packet without the extracted parts and to re-calculate the checksum.
3.
Requires IANA registration of a new IPv6 extension header and a new IPv4 protocol type.

Option 2: Embed the AppKey into Lower Layers

An alternative option is to embed the AppKey, not in the IP header, but in the SDAP header (defined TS 37.234) and in the PDU session UP protocol header (defined in TS 38.415), as shown in the next figure. Currently, in the UL direction, the SDAP header includes the QFI, and, in the DL direction, includes the QFI, the RQI and the RDI. Similar information is included in the PDU session UP protocol on the N3 interface. It is feasible therefore to include the AppKey in the SDAP header and in the PDU session UP protocol header. The AppKey length is assumed 16 bits or smaller.
On the non-3GPP access, the AppKey could be added to the GRE header, as part of the GRE Key. The GRE Key is 32 bits and can contain both the QFI (6 bits) and the AppKey (16 bits).
[image: image3.emf]UPF

NG-RAN

PDU payload / PDU session UP protocol/ GTP-U / UDP / IP

UE

PDU payload / SDAP/ PDCP / RLC

See TS 38.415

UPF

N3IWF

PDU payload / PDU session UP protocol/ GTP-U / UDP / IP

UE

PDU payload / GRE/ ESP / UDP / IP

See TS 38.415

See TS 37.234

GRE Key = 32 bits

(RFC 2890)

UL: QFI + AppKey

DL: QFI + RQI + RDI

UL: QFI + AppKey

DL: QFI + RQI

UL: QFI + AppKey

DL: QFI + RQI

UL: QFI + AppKey

DL: QFI + RQI

Fig. 1.2-2: Embed the AppKey into SDAP, GRE & PDU session UP protocol

The main drawback of Option 2 is that it requires the RAN groups to make some amendments to the SDAP and to the PDU Session UP protocol. We believe, however, that option 2 is much easier to implement in the UE and brings less impact and overhead to UPF. In addition, Option 2 is more secure because it is implemented in the lower layers in the UE and cannot be affected by the UE applications. A UE application cannot change the contents of the SDAP header but it could (if it has the appropriate privileges) change the contents of the IPv4/v6 headers. For this reason, we propose option 2 for solution 1.
2. Proposal

Based on the above discussion, we propose the following changes to solution 1.

* * * Start of Changes * * *

6.1
Solution #1: UE-Assisted Solution

6.1.1
Functional Description

6.1.1.1
General
The clauses below specify a solution that enables the network to detect the application associated with an encrypted data flow by using the "detection information" embedded by the UE into the first packet that initiates the encrypted data flow. This solution relies only on the "detection information" provided by the UE and does not require interfaces with external application servers, thus, it fulfils the requirements of Key Issue #2 (detection of encrypted traffic for applications without agreements with the MNO).
The key features of this UE-assisted solution are the following:

1.
The UE has an Encrypted Traffic Detection Function (UE-ETDF) which detects when a new encrypted data flow is initiated by a UE application, and embeds an "AppKey" to the first packet of the encrypted data flow. An AppKey is the "encrypted traffic detection information" provided by the UE and it is used by the network to detect the application associated with an encrypted data flow.

2.
If the UE does not have a UE-ETDF, the UE can retrieve a UE-ETDF from a trusted network function in the HPLMN, called NW-ETDF. However, the retrieval of the UE-ETDF from the network is considered as part of the UE provisioning and is not further considered in this solution.
3.
During the 5GC Registration, the UE indicates if it is capable of providing "encrypted traffic detection information" and, if it is, the UE may be provided with a list of application identities every time the UE establishes a PDU session. The UE must provide "encrypted traffic detection information" to the network when one of these applications initiates an encrypted data flows over the established PDU session.

4.
The "encrypted traffic detection information" provided by the UE is the Application Key (AppKey) associated with the application that initiated the encrypted data flow. The AppKey for every application is created by the UE-ETDF and by the NW-ETDF.

5.
If the UE-ETDF is modified in any way (e.g. by a malicious user), then the AppKeys created by the UE-ETDF will not match the AppKeys created by the NW-ETDF. Therefore, the network will receive unknown AppKeys from the UE and will determine that the UE-ETDF has been compromised. An UE application cannot include an AppKey itself in the user-plane packet, as explained in clause 6.1.1.2.1. An AppKey can only be inserted by the UE-ETDF.

6.
When the network (the UPF) receives a known AppKey in a user-plane packet of an encrypted data flow, the network uses this AppKey to detect the application associated with the encrypted data flow and to apply the corresponding packet detection rules.

6.1.1.2
Reference Architecture
As shown in figure 6.1.1.2-1, two new functions are introduced: An Encrypted Traffic Detection Function in the UE (UE-ETDF) and an Encrypted Traffic Detection Function in the network (NW-ETDF). The UE-ETDF can communicate with the NW-ETDF over a new interface (Netdf) by using the user plane (i.e. IP transport).

[image: image4.emf]5G

Access

Network

5GC

UE-ETDF

UE

PCF SMF

UPF

Data Network

Remote Server

NW-ETDF

N4

N6

N5 N7

Netdf

Figure 6.1.1.2-1: Reference architecture for 5GS

6.1.1.2.1
UE-ETDF

The UE-ETDF is a UE functional component that can be either pre-installed in the UE or can be retrieved from the NW-ETDF in HPLMN with a mechanism outside the scope of this solution. The UE-ETDF performs the following functions:

(a)
It derives an Application Key (AppKey) for each application provided by the network during the PDU session establishment procedure;

(b)
It detects when a new encrypted data flow is initiated in the UE (e.g. by detecting TCP SYN packets to port 443);

(c)
It determines the UE application that initiated the encrypted data flow; and

(d)
It piggybacks in the first packet (or in the first few packets) of an encrypted data flow an AppKey which can be used by a network (UPF) to determine the Packet Detection Rule (PDR) that should be applied to this encrypted data flow. How the AppKey is created for an application is discussed later. The AppKey is essentially the "encrypted traffic detection information" that is provided by the UE to the network. The AppKey should not be confused with a security key. As explained below, the AppKey of an application is a number (e.g. 16 bit long) derived from the application identity by using e.g. a hash function.

The main objective of UE-ETDF is to include an AppKey in the first packet of an encrypted data flow. The first packet of an encrypted data flow can be e.g. a TCP SYN packet to port 443, a TLS ClientHello packet, a UDP packet to port 80 (QUIC), etc. When the UE-ETDF detects the first packet that initiates an encrypted data flow, it determines the application that triggered this packet and then piggybacks to this first packet the AppKey corresponding to this application. As shown in figure 6.1.1.2.1-1, the AppKey is piggybacked only to the first packet (or to the first few packets) of an encrypted data flow. The subsequent packets of the encrypted data flow do not carry the AppKey or any other additional information. The UPF in the network uses the AppKey in the first packet of an encrypted data flow to match this data flow with a provisioned Packet Detection Rule.

[image: image5.emf]UE

AppKey

Remote

Server

Header

Payload

First packet of an

encrypted data flow

Network uses the AppKey to

determine the application associated

with the encrypted data flow

Network

Subsequent packets of

the encrypted data flow

Figure 6.1.1.2.1-1

The AppKey is inserted in the first packet of an encrypted data flow as follows:

-
When the packet is sent over NG-RAN, the UE inserts the AppKey into the Service Data Adaptation Protocol (SDAP) header; see TS 37.324.
-
When the packet is sent over untrusted non-3GPP access, the UE inserts the AppKey into the GRE header; see TS 23.502.

-
Over the N3 interface, the AppKey is inserted into the header of the PDU Session UP Protocol; see TS 38.415.
The insertion of AppKey into the various headers is illustrated in the figure below.
[image: image6.emf]NG-RAN

PDU payload / PDU session UP protocol/ GTP-U / UDP / IP

UE

PDU payload / SDAP/ PDCP / RLC

N3IWF

PDU payload / PDU session UP protocol/ GTP-U / UDP / IP

PDU payload / GRE/ ESP / UDP / IP

QFI + AppKey

QFI + AppKey

QFI + AppKey

QFI + AppKey

Figure 6.1.1.2.1-2: Insertion of AppKey in user-plane packets

6.1.1.2.2
NW-ETDF

The NW-ETDF performs the following functions:
(a)
Upon request, it provides to UE an instance of the UE-ETDF over a secure connection (e.g. over a TLS connection). The NW-ETDF provides to every UE a unique instance of the UE-ETDF, i.e. a UE-ETDF with a unique "signature". How this provisioning is performed is outside the scope of this solution.
(b) For every UE, the NW-ETDF stores the signature of the UE-ETDF instance in this UE. How this signature is stored is part of a provisioning procedure and is outside the scope of this solution.
(c) It calculates the Application Key (AppKey) of each application provided by the PCF. How each AppKey is calculated is explained in Fig. 6.1.2.2-1, steps 3-6. The AppKeys are forwarded to UPF (within the provisioned PDRs) and are used in UPF for matching encrypted data flows with the provisioned PDRs.
The solution does not require multiple NW-ETDFs; a single NW-ETDF is sufficient.

6.1.2
Procedures

6.1.2.1
Void

6.1.2.2
PDU Session Establishment for Encrypted Traffic Detection

A UE, which has a UE-ETDF function and can provide "encrypted traffic detection information" to the network, may request the establishment of a PDU session as shown in Fig. 6.1.2.2-1. The UE indicates to the network (during the 5GC Registration) that it is capable of providing "encrypted traffic detection information" and the network provides to UE the applications for which "encrypted traffic detection information" should be sent whenever a PDU session is established. The AppKey for each one of these applications is created by the UE and by the network.

[image: image11.emf]PCF SMF

1b. Nsmf_PDUSession_

CreateSMContext Request

PDU Session Id, ETDF Container

(Device-ID, OS-ID),

PDU Session Establishment Req.

3b. AppKeys Request

Device-ID, Rand, List of [App-ID]

4. Retrieve Signature

for the Device-ID

5. Calculate an

AppKey for each

App-ID

6. AppKeys Response

List of [App-ID, AppKey]

11. UE-ETDF

calculates its

Signature

12. UE-ETDF

calculates an AppKey

for each App-ID

UPF

8b. N4 Session Est. Request

Packet Detection Rules including AppKeys

9a. N4 Session Est. Response

2. Npcf_SMPolicyControl_Get

PDU Session Id,

(ETDF Container (Device-ID,

OS-ID))

7. Npcf_SMPolicyControl_Get

PCC Rules, Authorized QoS,

Rand, List of [App-ID, AppKey]

9b. Apply

provisioned Packet

Detection Rules

NW

ETDF UE AMF

1a. NAS Message

PDU Session Id, S-NSSAI,

DNN, ...

PDU Session

Establishment Req.

10a. Namf_Communication_

N1N2MessageTransfer

PDU Session Id, …

PDU Session Establishment

Accept

(ETDF Container (Rand,

List of [App-IDs]))

10b. NAS Message

PDU Session Id, ...

PDU Session

Establishment Accept

(ETDF Container (Rand,

List of [App-IDs]))

3a. Determine list of

Apps for encrypted

traffic detection

8a. Create Packet

Detection Rules

including AppKeys

13. Subsequent steps of PDU session establishment

Figure 6.1.2.2-1

1.
The UE sends an ETDF Container to AMF when the UE registers to 5GC. This container is stored in the UE Context and indicates to the network that the UE can provide "encrypted data traffic detection information" for the encrypted data flows sent over PDU sessions. The ETDF Container includes the UE's Device-ID (e.g. IMEI) and the UE's OS-ID (e.g. Android, iOS, etc.).

When the UE wants to establish a PDU session, the UE sends a NAS message containing a PDU Session Establishment Request, as normally. No additional IEs are included in this message. The AMF sends to SMF the ETDF Container for this UE in the Create SM Context Request message.

2.
The SMF receives the PDU Session Establishment Request (via the AMF) and requests SM policy from PCF by invoking the Npcf_SMPolicyControl_Get operation, as specified in TS 23.502 [3], clause 5.2.5.4.2. The ETDF Container provided by the AMF is forwarded to PCF.

3.
Since the PCF receives the ETDF Container, it knows that the UE is capable of providing "encrypted data traffic detection information". The PCF creates the list of applications for which the UE should provide "encrypted data traffic detection information". For example, the PCF creates the list [App-1, App-2, App-3] if the network wants to detect the encrypted data flows associated with App-1, App-2 and App-3. The PCF takes into account the OS-ID in the received ETDF Container in order to create the application identities for the operating system supported by the UE. The PCF requests from the NW-ETDF the AppKeys associated with the applications in the list. The PCF may provide a random number, Rand, to NW-ETDF for calculating the AppKeys.

4.
Based on the Device-ID received from PCF, the NW-ETDF retrieves the signature of the UE-ETDF in the UE. The NW-ETDF is provisioned with the signature of the UE-ETDF with a mechanisms that is outside the scope of this document.

5.
The NW-ETDF uses the stored signature of the UE-ETDF, the Rand (if provided) and the Application identity to calculate the AppKey for this application. The calculation of the AppKey could be based on a proprietary hash function, as shown below. If a Rand value is used, then the AppKey calculated for an application will be different every time the AppKey is calculated.

[image: image12.emf]Hash

function

App-ID

Signature

Rand

AppKey

6.
The NW-ETDF provides to PCF an AppKey for each one of the requested applications.

7.
The PCF sends to SMF the requested SM policy, including the PCC rules and the authorized QoS (as already specified in TS 23.502 [3]). In addition, it sends to SMF the application identities and the associated AppKeys received from NW-ETDF. If the PCF has sent a Rand value to NW-ETDF, it sends this Rand value to SMF too.

8.
The SMF creates Packet Detection Rules (PDRs) for the PDU session based on the received PCC rules (as already specified). A PDR that is used to detect an encrypted data flow contains one or more AppKeys in the Packet Detection Information (PDI). The SMF sends the created PDRs to UPF.
9.
The UPF responds to SMF and starts applying the received PDRs including the PDRs that include one or more AppKeys. This is further discussed in the next clause.

10.
The SMF sends a PDU Session Establishment Accept message to UE, which includes an ETDF Container. This container indicates to UE that it should activate encrypted traffic detection and it should provide AppKeys to the network over the user plane. These AppKeys assist the network detecting the application associated with every encrypted data flow. The ETDF Container includes the list of applications for which the UE should provide "encrypted data traffic detection information" (i.e. the list created by PCF in step 3) and includes the Rand, if it is received from PCF in step 7.

11.
The UE-ETDF in the UE calculates its own signature. If the UE-ETDF in the UE has not been modified (e.g. by a malicious user), the signature of UE-ETDF will be the same as the signature stored in the NW-ETDF.
12.
The UE-ETDF in the UE uses its own signature, the Rand and the Application identity to calculate the AppKey for each application in the received list. It uses exactly the same calculation as the NW-ETDF in step 5. Thus, the UE derives exactly the same AppKeys as the AppKey derived by NW-ETDF and provided to UPF.

13.
The PDU session establishment procedure is completed. After that, the UE-ETDF detects the encrypted data flows initiated by the applications in the received list and, in the first packet of every encrypted data flow, it adds the AppKey of the application which initiated this flow. Figure 6.1.1.2.1-2 illustrates how the AppKey is added to a packet and how it is sent from the UE to UPF.
6.1.2.3
User-Plane Procedure

After the PDU session establishment procedure is executed, the network can reliably detect an application associated with an encrypted data flow by using the "detection information" (the AppKey) provided by the UE. The entire user-plane procedure is shown in the figure below (starting from step 2).

[image: image14.emf]5GC

NW

ETDF

2. Detect a packet that

initiates an encrypted data

flow and find the application

which requested the

encrypted data flow

3. Retrieve the AppKey for

this application

4. Transmit the packet that initiates the

encrypted data flow including the AppKey

Header

Payload

AppKey

5. UPF finds a PDR that

includes the received

AppKey. Stores the 5-tuple

of the received packet.

Remote

Server

Subsequent packets of the encrypted data flow (packets sharing the same 5-tuple)

7. UPF applies the PDR to all packets of the encrypted data flow

UE

ETDF

1. PDU session establishment that enables Encrypted Traffic Detection

(see Figure 6.1.2.2-1)

6. UPF forwards the packet

to the remote server

(without the AppKey)

Figure 6.1.2.3-1: User-plane procedure for encrypted traffic detection

1.
The PDU session establishment procedure is executed, as discussed in the previous clause.

2.
The UE-ETDF detects the first packet of an encrypted data flow and finds the UE application which initiated this data flow. The first packet of an encrypted data flow could be a TCP SYN packet to port 443, a TLS ClientHello packet, etc.

3.
If the application which initiated the encrypted data flow is included in the list of applications received from the network, then the UE-ETDF shall provide detection information for this data flow. This detection information is the AppKey corresponding to the application that initiated the data flow. The UE-ETDF retrieves the AppKey corresponding to the application that initiated the data flow and embeds this AppKey in the first packet of the data flow.

4.
Subsequently, the UE transmits the data packet of the encrypted data flow to the network including the AppKey in the SDAP header, as shown in Figure 6.1.1.2.1-2.
5.
When the UPF receives the packet, it uses the embedded AppKey to detect the Packet Detection Rule (PDR) that matches this packet. Then the UPF stores the 5-tuples of this packet and associates this 5-tuple with the detected PDR rule.
6.
Finally, the UPF forwards the packet to its final destination (the remote server). The AppKey is not included in the forwarded packet.

7.
The UPF applies the PDR detected in step 5 to all incoming packets of the encrypted data flow, i.e. to all packets having a 5-tuple that is the same to the stored 5-tuple.
6.1.3
Impact on existing entities and interfaces

UE: It should be able to indicate its capability to provide encrypted traffic detection information during the 5G registration procedure. During PDU session establishment it should be able to receive the list of applications for which it should provide detection information and to derive the associated AppKey for each application in the list. In addition, it should be able to detect when an application in the list initiates an encrypted data flow and to embed in the first packet of the encrypted data flow the AppKey associated with the application.
AMF: It should be able to receive and stores in the UE context the ETDF Container provided by the UE. Also it should include the ETDF Container to all Create SM Context requests sent to SMF.
SMF: During a PDU session establishment, and if it determines that the UE can send encrypted traffic detection information, it should forward the ETDF Container to PCF. It should also be able to derive Packet Detection Rules for the UPF based on the list of applications (and associated AppKeys) received from PCF. In addition, it should send the list of applications to UE in the PDU session establishment accept.
PCF: During a PDU session establishment, it should be able to determine the list of applications for which encrypted traffic detection should be provided by the UE. It should be able to interface with the NW-ETDF and request an AppKey for every application in the list.
UPF: It should be able to receive and process PDRs that contain one or more AppKeys in the Packet Detection Information (PDI).
NW-ETDF: This is a new functional entity that derives an AppKey for each application provided by PCF, as shown in Fig. 6.1.2.2-1. It stores the signature of the UE-ETDF in every UE and plays a key role in security mechanism of the solution.
* * * End of Changes * * *

3GPP

SA WG2 TD

_1580055615.vsd
Version Class Flow-label

Payload length

Next Header = GRE

Source Address

Destination Address

Destination Address

Protocol Type = TCP

GRE Key =
AppKey

TCP Payload

GRE Header

IPv6 header (it can be applied to IPv4 header)

_1588086171.vsd
PCF

SMF

1b. Nsmf_PDUSession_ CreateSMContext Request
PDU Session Id, ETDF Container (Device-ID, OS-ID),
PDU Session Establishment Req.

3b. AppKeys Request
Device-ID, Rand, List of [App-ID]

4. Retrieve Signature for the Device-ID

5. Calculate an AppKey for each App-ID

6. AppKeys Response
List of [App-ID, AppKey]

11. UE-ETDF calculates its Signature

12. UE-ETDF calculates an AppKey for each App-ID

UPF

8b. N4 Session Est. Request
Packet Detection Rules including AppKeys

9a. N4 Session Est. Response

13. Subsequent steps of PDU session establishment

2. Npcf_SMPolicyControl_Get
PDU Session Id,
(ETDF Container (Device-ID, OS-ID))

7. Npcf_SMPolicyControl_Get
PCC Rules, Authorized QoS,
Rand, List of [App-ID, AppKey]

9b. Apply provisioned Packet Detection Rules

NW
ETDF

UE

AMF

_1588496699.vsd

5G
Access Network

5GC

UE-ETDF

UE

PCF

SMF

UPF

Data Network

Remote Server

NW-ETDF

N4

N6

N5

N7

Netdf

_1588089886.vsd
5GC

NW
ETDF

2. Detect a packet that initiates an encrypted data flow and find the application which requested the encrypted data flow

3. Retrieve the AppKey for this application

4. Transmit the packet that initiates the encrypted data flow including the AppKey

Header

Payload

AppKey

5. UPF finds a PDR that includes the received AppKey. Stores the 5-tuple of the received packet.

_1584784356.vsd
Hash
function

App-ID

Signature

Rand

AppKey

_1580055614.vsd
Version Class Flow-label

Payload length

Next Header = ETDF

Source Address

Destination Address

Destination Address

Next Header = TCP

AppKey

TCP Payload

New Extension Header

IPv6 header

